Сбор нагрузок на кровлю пример таблица

Сбор нагрузок на кровлю и стропила

Вы сами собираетесь проектировать и строить дом? Тогда Вам без процедуры сбора нагрузок на кровлю (или другими словами, на несущие конструкции крыши) не обойтись. Ведь только зная нагрузки, которые будут действовать на кровлю, можно определить минимальную толщину железобетонной плиты покрытия, рассчитать шаг и сечение деревянных или металлических стропил, а также обрешетки.

Данное мероприятие регламентируется СНиПом 2.01.07-85* (СП 20.13330.2011) «Актуализированная редакция» [1].

Сбор нагрузок на кровлю производится в следующем порядке:

1. Определение собственного веса конструкций крыши.

Сюда, например, для деревянной крыши входят вес покрытия (металлочерепица, профнастил, ондулин и т.д.), вес обрешетки и стропил, а также масса теплоизоляционного материала, если предусматривается теплый чердак или мансарда.

Для того, чтобы определить вес материалов нужно знать их плотность, которую можно найти здесь.

2. Определение снеговой (временной) нагрузки.

Россия находится в таких широтах, где зимой неизбежно выпадает снег. И этот снег необходимо учитывать при конструировании крыши, если, конечно, Вы не хотите лепить снеговиков у себя в гостиной и спать на свежем воздухе.

Нормативное значение снеговой нагрузки можно определить по формуле 10.1 [1]:

где: св — понижающий коэффициент, который учитывает снос снега с крыши под действием ветра или других факторов; принимается он в соответствии с пунктами 10.5-10.9. В частном строительстве он обычно равен 1, так как уклон крыши дома там чаще всего составляет более 20%. (Например, если проекция крыши составляет 5м, а ее высота — 3м, уклон будет равен 3/5*100=60%. В том случае, если у вас, например, над гаражом или крыльцом предусматривается односкатная крыша с уклоном от 12 до 20%, то св=0,85.

сt — термический коэффициент, учитывающий возможность таяния снега от избыточного тепла, которое выделяется через не утепленную кровлю. Принимается он в соответствии с пунктом 10.10 [1]. В частном строительстве он равен 1, так как практически не найдется человека, который на не утепленном чердаке поставит батареи.

μ — коэффициент, принимаемый в соответствии с пунктом 10.4 и приложением Г [1] в зависимости от вида и угла наклона кровли. Он позволяет перейти от веса снегового покрова земли к снеговой нагрузке на покрытие. Например, для следующих углов наклона односкатной и двускатной кровли коэффициент μ имеет значения:

Остальные значения определяются по методу интерполяции.

Примечание: коэффициент μ может иметь значение меньше 1 только в том случае, если на крыше нет конструкций, задерживающих снег.

Sg — вес снега на 1 м2 горизонтальной поверхности; принимается в зависимости от снегового района РФ (приложение Ж и данным таблицы 10.1 [1]). Например, город Нижний Новгород находится в IV снеговом районе, а, следовательно, Sg = 240 кг/м2.

3. Определение ветровой нагрузки.

Расчет нормативного значения ветровой нагрузки производится в соответствии с разделом 11.1 [1]. Теорию здесь расписывать не буду, так как весь процесс описан в СНиПе.

Примечание: Ниже Вы найдете 2 примера, где подробно расписана данная процедура.

4. Определение эксплуатационной (временной) нагрузки.

В том случае, если Вы захотите использовать крышу как место для отдыха, то Вам необходимо будет учесть нагрузку равную 150 кг/м2 (в соответствии с таблицей 8.3 и строкой 9 [1]).

Данная нагрузка учитывается без снеговой, т.е. в расчете считается либо та, либо другая. Поэтому с точки зрения экономии времени в расчете целесообразно использовать большую (чаще всего это снеговая).

5. Переход от нормативной к расчетной нагрузке.

Этот переход осуществляется с помощь коэффициентов надежности. Для снеговой и ветровой нагрузок он равен 1,4. Поэтому для того, чтобы перейти, например, от нормативной снеговой нагрузки к расчетной необходимо S умножить на 1,4.

Что касается нагрузок от собственного веса конструкций крыши и ее покрытия, то здесь коэффициент надежности принимается по таблице 7.1 и пункту 8.2.2 [1].

Так, в соответствии с данным пунктом коэффициент надежности для временно распределенных нагрузок принимается:

1,3 — при нормативной нагрузке менее 200 кг/м2;

1,2 — при нормативной нагрузке 200 кг/м2 и более.

6. Суммирование.

Последним этапом производится складывание всех нормативных и расчетных значений по всем нагрузкам с целью получения общих, которые будут использоваться в расчетах.

Примечание: если Вы предполагаете, что по заснеженной кровле будет кто-то лазить, то к перечисленным нагрузкам для надежности Вы можете добавить временную нагрузку от человека. Например, она может равняться 70 кг/м2.

Для того, чтобы узнать нагрузку на стропила или необходимо преобразовать кг/м2 в кг/м. Это производится путем умножения расчетного значения нормативной или расчетной нагрузки на полупролет с каждой стороны. Аналогично собирается нагрузка на доски обрешетки.

Например, стропила лежат с шагом 500 мм, а обрешетины — с шагом 300 мм. Общая расчетная нагрузка на кровлю составляет 200 кг/м2. Тогда нагрузка на стропила будет равна 200*(0,25+0,25) = 100 кг/м, а на доски обрешетки — 200*(0,15+0,15) = 60 кг/м (см. рисунок).

Теперь для наглядности рассмотрим два примера сбора нагрузок на кровлю.

Пример 1. Сбор нагрузок на односкатную монолитную железобетонную кровлю.

Исходные данные.

Район строительства — г. Нижний Новгород.

Конструкция крыши — односкатная.

Угол наклона кровли — 3,43° или 6% (0,3 м — высота крыши; 5 м — длина ската).

Размеры дома — 10х9 м.

Высота дома — 8 м.

Тип местности — коттеджный поселок.

Конструкций, задерживающих снег на крыше, не предусмотрено.

1. Монолитная железобетонная плита — 100 мм.

2. Цементно-песчаная стяжка — 30 мм.

4. Утеплитель — 100 мм.

5. Нижний слой гидроизоляционного ковра.

6. Верхний слой наплавляемого гидроизоляционного ковра.

Сбор нагрузок.

Определим нагрузки, действующие на 1 м2 грузовой площади (кг/м2) кровли.

— монолитная ж/б плита (ρ=2500 кг/м3) толщиной 100 мм

— цементно-песчаная стяжка (ρ=1800 кг/м3) толщиной 30 мм

— пенополистирол (ρ=35 кг/м3) толщиной 100 мм

Примечание: вес паро- и гидроизоляции не учитывается в связи с их малым весом.

Нагрузки, действующие на несущую конструкцию скатных крыш

От собственного веса несущих конструкций крыши.

На начальном этапе сбора нагрузок определяется ориентировочно: вес деревянной обрешётки 10–12 кг/м²; наслонных деревянных стропил и деревянных прогонов 5–10 кг/м²; висячих деревянных стропил, несущих только холодную кровлю 10–15 кг/м².

Совокупность нагрузок.

Зимой на стропильную систему крыши могут действовать одновременно все нагрузки: от веса снега, собственного веса стропильной системы, кровли, утеплителя и давления ветра. В другое время часть этих нагрузок исчезает, например, давление от веса снега, тем не менее, стропила рассчитывают на полную совокупность нагрузок. И после их арифметического сложения умножают на коэффициент надежности 1,1. Другими словами, крыша рассчитывается на самые неблагоприятные условия работы и при этом закладывается дополнительная десятипроцентная прочность (коэффициент 1,1). В старых нормах коэффициент надежности для снеговых нагрузок составлял 1,4. В связи со значительным изменением (увеличением) нормативных значений давлений от веса снега, этот коэффициент в новом СНиПе не указывается его уже учли в нормативах по весу снега и даже с большим значением. Включать его в расчет не нужно.

Как уже говорилось, расчет несущей конструкции крыши (стропил, прогонов и обрешетки) ведется по двум предельным состояниям: на разрушение и прогиб.

  • Расчет на разрушение производится на полную нагрузку, действующую на крышу. Она называется расчетной нагрузкой и включает в себя полный вес снега принятый по таблице 1 с учетом наклона скатов, ветровую нагрузку, зависящую от высоты здания и угла наклона скатов, собственный вес крыши (стропил, прогонов, обрешетки, утепления и подшивки).
  • Расчет на прогиб ведется для той же суммы нагрузок, но вес снега принимается с понижающим коэффициентом 0,7. Эта нагрузка называется расчетной нормативной нагрузкой или просто нормативной нагрузкой.
Читать еще:  Бетонирование столбов для забора своими руками

Для правильного расчета стропильной системы должны быть собраны два варианта нагрузок действующих по площади (расчетная и нормативная) и переведены в линейные нагрузки.

Приведение нагрузок действующих по площади к нагрузкам действующим на метр длины конструкций крыши.

Все вышеприведенные нагрузки определяются по СНиПам и техническим характеристикам применяемых материалов. Эти нагрузки показывают общее давление от веса снега, слоев кровли и давления ветра и измеряются в килограммах на квадратный метр (кг/м²). Однако в конструкции крыши имеются несколько несущих конструкций: решетины, стропила, прогоны. Каждая из них работает только на ту нагрузку, которая давит непосредственно на нее, а не на крышу в целом. Все перечисленные несущие элементы крыши — это линейные конструкции и должны рассчитываться на давление, действующее на каждый метр длины этого элемента, то есть единица измерения кг/м² должна быть переведена в единицу измерения кг/м.

На каждую отдельно взятую стропилину давит только та нагрузка, которая расположена над ней. Значит, совокупную равномерно распределенную нагрузку нужно умножить на шаг установки стропил (рис. 1). Изменением ширины шага установки стропил, а следовательно, изменением площади сбора нагрузки над стропилом можно увеличивать или уменьшать нагрузку.

рис. 1. Приведение нагрузки действующей по площади к линейной нагрузке.

Обычно шаг установки стропил выбирают конструктивно в зависимости от размеров здания. Например, на стене длиной 6 м можно разместить стропила с шагом в 1 м, в этом случае потребуется 7 стропилин. Однако длина стены в 6 м также хорошо делится и на шаг 1,2 м, тогда получится 6 стропилин или на шаг 1,5 м — потребуется 5 стропилин. Для такой длины стен можно применить шаг установки и в 2, и в 3 м, но будет нужна усиленная обрешетка. Обычно шаг установки стропил не делают более 2 м, а для утепленных крыш его принимают равным размерам плит утеплителя 0,6, 0,8, 1,2 м. Другими словами, шаг установки стропил назначается в каждом конкретном случае свой, в зависимости от длины стен здания так, чтобы на ней разместилось целое число стропильных ног и расстояние между ними было одинаковым. Единственным критерием выбора шага стропил может быть только экономический. Нужно просчитать несколько вариантов установки стропил, найти их сечение и сравнить расход материалов. Наименьшая материалоемкость, при прочих равных, указывает на верность выбранного шага установки стропил.

С шагом установки решетин все обстоит несколько иначе, тут нельзя произвольно взять и изменить между ними расстояние. Чаще всего расстояние между решетинами зависит от применяемого кровельного материала, поэтому он задается строго определенных размеров, а сечение решетин подбирается расчетом. Нагрузка на каждый брусок или доску обрешетки определяется аналогично расчетной нагрузке на стропила, путем произведения нормативной нагрузки на шаг установки решетин.

Место установки прогонов назначается конструктивно и/или после расчета шага и сечения стропил. Они рассчитываются на сосредоточенные силы от давления стропил. Кроме обрешетки, стропил и прогонов, в конструкции крыш имеются и другие несущие элементы, такие как подкосы (подстропильные ноги) и стойки.

Пример сбора нагрузок.

Дано. Регион строительства Сергиево-Посадский р-н Московской обл. Высота строения — 10 м. Двухскатная мансардная крыша с уклоном скатов 30°. Кровля из металлочерепицы по сплошной обрешетке. Мансарда изнутри утеплена теплоизоляцией URSA М-20 толщиной 18 см и обшита одним слоем гипсокартона толщиной 12,5 мм.

По карте районирования снегового покрова (рис. 3) или карте СНиП 2.01.07-85 определяем, что давление от веса снега для расчета по первой группе предельных состояний составляет 180 кг/м², для расчета по второй группе предельных состояний — 126 кг/м².

По рисунку 5 видим, что крыша с наклоном скатов до 30° включительно, накапливает снеговые мешки на подветренном скате. Увеличение веса снега характеризуется коэффициентом µ=1,25. Следовательно, вес снегового покрова должен быть увеличен на эту величину. Тогда для расчета по первой группе предельных состояний вес снега составит 180×1,25=225 кг/м², а для расчета по второй группе предельных состояний — 126×1,25 = 157,5 кг/м².

По картам районирования средней скорости ветра и температуры января (рис. 6 и 7) видим, что снег с крыши ветром сдуваться не будет, тем более, что это не позволяет сделать и уклон крыши, превышающий 12°. Следовательно, коэффициент учитывающий сдувание снега будет равен с=1. Таким образом, получаем окончательные величины снеговых нагрузок по формулам:

Qр.сн=Q×µ×c=180×1,25×1=225 кг/м² — для первого предельного состояния (на прочность)
Qн.сн=0,7Q×µ×c=0,7×180×1,25×1=157,5 кг/м² — для второго предельного состояния (на прогиб)

По карте районирования ветрового давления (рис. 9) определяем, что давление ветра на крышу будет составлять Wо=32 кг/м², а коэффициент k(z)=0,65, для местности типа Б. Далее по рисунку 10 определяем, что на скаты крыши будет действовать подъемная сила уменьшающая давление ветра, эта величина характеризуется несколькими коэффициентами с. Однако мы эти понижающие коэффициенты использовать не будем, поскольку нам достоверно неизвестно какой из скатов будет с подветренной, а какой с наветренной стороны, поэтому примем с=1
Таким образом, получаем нагрузку от давления ветра равную:

W = Wо×k(z)×c=32×0,65×1=20,8 кг/м²

По техническим характеристикам и теплотехническому расчету рассчитываем вес строительных материалов используемых для строительства крыши:

металлочерепица — 5 кг/м²;
обрешетка — 12 кг/м²;
утеплитель — 4 кг/м²;
гипсокартон — 10,6 кг/м²

Собственный вес стропильной системы временно определяем равным 10 кг/м². В последующих расчетах, когда будет определено сечение конструктивных элементов (стропил) нагрузку нужно будет вновь пересчитать с учетом появившихся размеров стропил.

Теперь можно суммировать все нагрузки для расчета по двум предельным состояниям:

Qр=225+20,8+5+12+4+10,6+10=288 кг/м² — для расчета на прочность
Qн=157,5+20,8+5+12+4+10,6+10=220 кг/м² — для расчета на прогиб

Для получения окончательных данных по нагрузкам увеличим их на 10%, умножим на коэффициент надежности 1,1

Qр=288×1,1=317 кг/м² — для расчета на прочность
Qн=220×1,1=242 кг/м² — для расчета на прогиб

Вот эти цифры и будем использовать для дальнейших расчетов.

Пример приведения нагрузок действующих на 1 м² к нагрузкам действющим на 1 пм.

Дано: для двух типов предельных состояний имеем нагрузки Qр и Qн действующие на 1 м² крыши равными 317 и 242 кг/м². Шаг стропил b=1,2 м.
Решение.
Нагрузку нужно умножить на шаг установки конструктивного элемента ( в данном случае, шаг стропил).

qр=Qр×b=317 кг/м²×1,2 м=381 кг/м
qн=Qн×b=242 кг/м²×1,2 м=291 кг/м

Те же нагрузки, шаг стропил b=0.8 м

Решение.
qр=Qр×b=317 кг/м²×0,8 м=254 кг/м
qн=Qн×b=242 кг/м²×0,8 м=194 кг/м

Те же нагрузки, шаг стропил b=1 м

Решение.
qр=Qр×b=317 кг/м²×1 м=317 кг/м
qн=Qн×b=242 кг/м²×1м=242 кг/м
Аналогично определяются нагрузки и на другие конструктиыные элементы крыши, например, на прогоны, бруски или доски обрешетки.

Источник: «Конструкции крыш. Стропильные системы» Савельев А.А.

Оставляя комментарий Вы соглашаетесь с Политикой конфиденциальности

Правильный расчет стропильной системы крыши

Хотите произвести расчет стропильной системы быстро, без изучения теории и с достоверными итогами? Воспользуйтесь онлайн калькулятором на сайте!

Вы можете себе представить человека без костей? Точно так же скатная крыша без стропильной системы больше похожа на строение из сказки про трех поросят, которую запросто сметет природной стихией. Крепкая и надежная система стропил – залог долговечности конструкции крыши. Чтобы качественно сконструировать систему стропил, необходимо учесть и спрогнозировать основные факторы, влияющие на прочность конструкции.

Принять во внимание все изгибы крыши, поправочные коэффициенты на неравномерное распределение снега по поверхности, снос снега ветром, уклон скатов, все аэродинамические коэффициенты, силы воздействия на конструктивные элементы крыши и так далее — рассчитать все это максимально приближенно к реальной ситуации, а также учесть все нагрузки и искусно собрать их сочетания – задача не из легких.

Читать еще:  Щипцы для резки плитки

Если хотите разобраться досконально – список полезной литературы приведен в конце статьи. Конечно, курс сопромата для полного понимания принципов и безукоризненного расчета стропильной системы в одну статью не уместить, поэтому приведем основные моменты для упрощенной версии расчета.

Классификация нагрузок

Нагрузки на стропильную систему классифицируются на:

1) Основные:

  • постоянные нагрузки: вес самих стропильных конструкций и крыши,
  • длительные нагрузки – снеговые и температурные нагрузки с пониженным расчетным значением (используются при необходимости учета влияния длительности нагрузок, при проверке на выносливость),
  • переменное кратковременное влияние — снеговое и температурное воздействие по полному расчетному значению.

2) Дополнительные – ветровое давление, вес строителей, гололедные нагрузки.

3) Форс-мажорные – взрывы, сейсмоактивность, пожар, аварии.

Для осуществления расчета стропильной системы принято рассчитывать предельные нагрузки, чтобы затем, исходя из подсчитанных величин, определить параметры элементов стропильной системы, способных выстоять против этих нагрузок.

Расчет стропильной системы скатных крыш производится по двум предельным состояниям:

a) Предел, при котором происходит разрушение конструкции. Максимально возможные нагрузки на прочность конструкции стропил должны быть меньше предельно допустимых.

b) Предельное состояние, при котором возникают прогибы и деформация. Возникающий прогиб системы при нагрузке должен быть менее предельно возможного.

Для более простого расчета применяется только первый способ.

Расчет снеговых нагрузок на крышу

Для подсчета снеговой нагрузки используют такую формулу: Ms = Q x Ks x Kc

где Ms — снеговая нагрузка,

Q — вес снегового покрова, покрывающий 1м2 плоской горизонтальной поверхности крыши. Зависит от территории и определяется по карте на рисунке № X для второго предельного состояния – расчет на прогиб (при расположении дома на стыке двух зон, выбирается снеговая нагрузка с большим значением).

Для прочностного расчета по первому типу величина нагрузки выбирается соответсвенно району проживания по карте (первая цифра в указанной дроби — числитель), либо берется из таблицы №1:

Первое значение в таблице измеряется в кПа, в скобках нужная переведенная величина в кг/м2.

Ks — поправочный коэффициент на угол наклона кровли.

  • Для крыш с крутыми склонами с углом более 60 градусов снеговые нагрузки не учитываются, Ks=0 (снег не скапливается на круто скатных крышах).
  • Для крыш с углом от 25 до 60, коэффициент берется 0,7.
  • Для остальных он равен 1.

Угол наклона крыши можно определить онлайн калькулятором крыши соответствующего типа.

Kc – коэффициент ветрового сноса снега с крыш. При условии пологой крыши с углом ската 7-12 градусов в районах на карте со скоростью ветра 4 м/с, Kc принимается = 0.85. На карте отображено районирование по скорости ветра.

Коэффициент сноса Kc не учитывается в районах с январской температурой теплее -5 градусов, так как на крыше образуется ледяная корка, и сдува снега не происходит. Не учитывается коэффициент и в случае закрытия здания от ветра более высокой соседней постройкой.

Снег ложится неравномерно. Зачастую с подветренной стороны формируется так называемый снеговой мешок, особенно в местах стыков, изломов (ендова). Следовательно, если вы хотите прочную крышу, делайте шаг стропил минимальным в этом месте, также внимательно относитесь к рекомендациям производителей кровельного материала – снег может обломить свес, если он неправильных размеров.

Напоминаем, что расчет, приведенный выше, предложен вашему вниманию в упрощенной форме. Для более надежного расчета советуем умножить результат на коэффициент надежности по нагрузке (для снеговой нагрузки = 1,4).

Расчет ветровых нагрузок на стропильную систему

С давлением снега разобрались, теперь перейдем к расчетам ветрового влияния.

В независимости от угла ската, ветер сильно воздействует на крышу: крутоскатную кровлю старается сбросить, более плоскую кровлю – поднять с подветренной стороны.

Для расчета нагрузки ветра во внимание принимают его горизонтальное направление, при этом он дует двунаправленно: на фасад и на крышной скат. В первом случае поток разбивается на несколько – часть уходит вниз к фундаменту, часть потока по касательной снизу вертикально давит на свес крыши, пытаясь ее поднять.

Во втором случае, воздействуя на скаты крыши, ветер давит перпендикулярно скату, вдавливая его; также образуется завихрение по касательной с наветренной стороны, огибая конек и превращаясь в подъемную силу уже с подветренной стороны, в связи с разницей в давлении ветра с обеих сторон.

Для подсчета усредненной ветровой нагрузки используют формулу

Mv = Wo x Kv x Kc x коэффициент прочности,

где Wo – нагрузка ветровая давления, определяемая по карте

Калькулятор расчета нагрузки на стропила для определения оптимального сечения

Для изготовления стропильных ног применяется качественный пиломатериал определенного сечения. Его прочностных характеристик должно быть гарантированно достаточно для того, чтобы конструкция крыши могла противостоять всем выпадающим на нее нагрузкам.

Калькулятор расчета нагрузки на стропила для определения их оптимального сечения

Чтобы определиться с этим параметром, придется провести некоторые вычисления. Посильную помощь сможет оказать калькулятор расчета нагрузки на стропила для определения оптимального сечения пиломатериала для их изготовления.

Цены на крепления для стропил

Необходимые пояснения по проведению расчетов будут приведены ниже.

Калькулятор расчета нагрузки на стропила для определения оптимального сечения

Алгоритм проведения расчета сечения стропильных ног

Работа будет строиться в два этапа. Вначале с помощью калькулятора будет определена распределенная нагрузка на 1 погонный метр стропильной ноги. Затем, по приложенной таблице, можно будет подобрать оптимальный размер бруса для изготовления стропила.

Шаг первый – расчет распределенной нагрузки на стропильные ноги

Калькулятор расчёта запросит следующие значения:

  • Угол уклона ската. Эта величина напрямую связана с уровнями внешних нагрузок на кровлю – снеговую и ветровую.

С крутизной ската и, соответственно, с высотой конька (конькового узла) поможет разобраться специальный калькулятор, к которому ведет ссылка.

  • Тип планируемого кровельного покрытия. Естественно, что различные покрытия имеют собственную массу, которая предопределяет статическую нагрузку на стропильную систему. В калькуляторе уже учтены не только весовые характеристики различных покрытий, но и материалы обрешетки и утепления кровли.
  • Необходимо указать зону своего региона по уровню возможной снеговой нагрузки. Ее несложно определить по расположенной ниже карте-схеме:

Карта-схема для определения своей зоны по уровню снеговой нагрузки

  • Аналогичным образом определяется и зона по уровню ветрового давления – для этого существует своя карта-схема.

Карта-схема для определения зоны по степени ветрового воздействия на кровлю

  • Необходимо учесть особенности расположения здания на местности. Для этого нужно оценить его «окружение» и выбрать одну из трех предлагаемых зон, «А», «Б» или «В».

При этом есть нюанс. Все естественные или искусственные преграды для ветра могут приниматься в расчет только в том случае, если они расположены на расстоянии от дома, не превышающем величины 30×Н, где Н – это высота здания по коньку. Например, для здания высотой 7 метров получается круг с радиусом 210 метров. Если преграды расположены дальше, то это будет считаться открытой местностью.

  • Наконец, потребуется внести высоту дома в метрах (по коньку).
  • Последнее окно калькулятора – шаг установки стропильных ног. Чем чащи они устанавливаются – тем меньше будет распределенная нагрузка, выпадающая на каждую из них, но при этом, естественно, увеличивается их количество. Можно «поиграть» значением шага, чтобы проследить динамику изменения распределенной нагрузки – так появится возможность выбрать оптимальное значение для дальнейшего определения сечения стропил.

Шаг второй – определение сечения стропильной ноги

Итак, имеется значение распределённой нагрузки, выпадающей на погонный метр стропильной ноги. Наверняка, заранее была рассчитана и длина стропила (если нет, то рекомендуется перейти к соответствующему калькулятору). С этими данными уже можно войти в таблицу для определения сечения бруса.

Таблица для определения оптимального сечения бруса для изготовления стропильных ног

Есть еще один нюанс. Если стропила получаются слишком длинными, то для повышения их жесткости часто предусматриваются дополнительные усиливающие элементы системы – стойки (бабки) или подкосы. Они позволяют уменьшить расстояние «свободного пролета», то есть между соседними точками опоры. Именно это значение и будет необходимо для вхождения в таблицу.

Читать еще:  Фундамент под забор из профнастила своими руками

На иллюстрации стрелками показан пример определения сечения стропила для распределенной нагрузки в 75 кг/погонный метр и с расстоянием между точками опоры в 5 метров. В левой части таблицы можно взять любое из предлагаемых значений, которое покажется удобнее: доски или брусья с минимальными сечениями: 40×200; 50×190; 60×180; 70×170; 80×160; 90×150; 100×140. Кроме того, можно использовать и бревно с диаметром 140 мм.

Стропила – основные несущие элементы конструкции крыши

От их качества и правильности расчета зависят долговечность и надежность всей кровельной конструкции в целом. Много важной информации по этому вопросу содержит статья нашего портала «Стропила своими руками» .

Нагрузка от веса кровли

На выбор сечения стропил и шага их установки существенное влияние оказывает собственный вес кровли, материал которой, в свою очередь, зависит от уклона скатов крыши.

Скаты одной кровли обычно устраивают с одинаковым уклоном, который выбирают в зависимости от кровельного материала, способа его укладки, архитектурных требований и экономических соображений, а также от района строительства. С крутых кровель, с уклоном 45° и более, быстро удаляется атмосферная вода и снег, что учитывают при строительстве зданий в районах с большим количеством осадков. Но с увеличением уклона повышается стоимость кровли. Например, при возведении кровли с уклоном 45° требуется в полтора раза больше материала, чем для плоской, а при уклоне крыши в 60° — в два раза больше. В тех районах страны, где бывают сильные ветры, наиболее рационально устраивать пологие кровли, так как ветровая нагрузка на скаты таких кровель меньше и наоборот, в заснеженных районах с несильными ветрами, лучше делать крутые скаты, уменьшая снеговую нагрузку за счет скатывания снега.

Уклон скатов крыш в различных нормативных документах выражается по разному: в виде безразмерных величин (отношения высоты к половине пролета), в процентах и градусах (рис. 13). Самое понятное определение уклона в виде безразмерных единиц. Когда крыша строится, то конечно же, никто не измеряет наклон скатов в градусах транспортиром. Если при строительстве отсутствует проектная документация, задающая высоту устройства конька, поступают проще: измеряют пролет здания, находят центр и от него вверх с помощью ровной деревянной рейки выносят высоту равную, например, половине пролета (уклон 1 : 1) или трети половины пролета (уклон 1 : 3), или любую другую. Процентное определение уклона, на взгляд многих строителей, только запутывает работу.

рис. 13. Взаимосвязь между безразмерной величиной уклона скатов крыши, углом в градусах и процентах

На уклон скатов крыши влияет и вид кровельного материала, так как при строительстве необходимо учитывать размер кровельного материала, способ его крепления, технологичность укладки и предусмотреть дальнейшую его ремонтопригодность и доступность обслуживания. Для скатных крыш применяют различные кровельные материалы: стальные оцинкованные листы, плоские и волнистые асбестоцементные и битумные листы, керамическую, цементную и металлическую черепицу, рубероид и другие. Выбор кровельного материала определяет величину угла наклона крыши. Чем плотнее материал кровли и герметичнее его стыки, тем меньше может быть уклон крыши, и наоборот, чем мельче размеры штучного кровельного материала, например, черепицы, тем круче должна быть крыша. Это объясняется не только большим количеством соединений малоразмерных деталей, а значит, возможным протеканием, но и большим весом кровли. Чем тяжелее кровельный материал, тем больший угол наклона нужно придать скатам. Рекомендуемые уклоны скатных крыш приведены в таблице 5.

Необходимо отметить, что в таблице приведены рекомендованные практикой и нормативными документами уклоны скатов кровель из различных материалов и их усредненный вес на квадратный метр. Однако рынок строительных материалов намного богаче, фирмы-изготовители кровельных материалов постоянно совершенствуют свою продукцию: снижают вес и модернизируют технические характеристики изделий. При выборе конкретного материала на кровлю лучше использовать техническую документацию фирмы-изготовителя.

В вес кровли входит вес обрешетки. Обрешеткой называют несущий элемент кровли, к которому собственно крепится сама кровля. Различают два вида обрешеток: сплошная и разреженная (рис. 14). Чтобы определить требуемый вид обрешетки и шаг установки решетин, нужно заранее определиться с видом кровельного покрытия.

рис. 14. Обрешетки скатных крыш

Разреженная обрешетка делается под жесткие кровельные материалы, то есть под те материалы, которые сами способны нести на себе снеговую и ветровую нагрузку и при этом не прогибаться и, тем более, не разрушаться. Разреженную обрешетку выполняют из деревянных жердей или пиленых брусков. В настоящее время в продаже появились П-образные оцинкованные металлические решетины. Шаг установки решетин и размер их сечения зависят от вида кровельного материала.

Под кровли из крупноразмерных штучных элементов: асбестоцементные листы среднего и унифицированного профиля длиной до 1,3 м и цементноволокнистые листы шаг раскладки обрешетки выбирают таким, чтобы под каждым листом оказалось три решетины. Обычно шаг решетин составляет 60 см под асбестоцементные и цементноволокнистые листы любой унифицированной длины. Сечение решетин обычно принимается 60×60 мм, можно и меньше, например, 40×60 мм, но тогда их нужно устанавливать чаще. Под волнистые целлюлозобитумные листы типа ондулин шаг обрешетки выбирается от имеющегося уклона скатов крыши. Он выбирается размером 45 см для уклонов от 1 : 6 до 1 : 4 и 60 см — для уклонов более 1 : 4. Для крыш с уклоном скатов менее 1 : 6 под ондулин делается сплошная обрешетка.

Под кровли из малоразмерных штучных элементов, например, из черепицы, шаг обрешетки принимается таким, чтобы каждая отдельная черепица легла на две решетины. Он может составлять от 16 до 40 см. Самый распространенный шаг примерно 33 см. При расчете веса кровельного покрытия лучше заранее определиться с выбором типа черепицы и уточнить шаг обрешетки. Обрешетку под черепицу при однослойном покрытии стелют из обрезных брусков сечением 50×50 или 50×60 мм, при двухслойном или тяжелой штампованной черепицей — сечением 60×60 мм.

При устройстве кровель из стального профилированного настила и его разновидности металлочерепицы, шаг решетин выбирается исходя из несущей способности материала. Обычно он составляет 35–40 см и равен поперечному шагу профиля металлочерепицы. Для обрешетки используются доски шириной примерно 100 мм.

Под мягкие кровельные материалы делается сплошная обрешетка. Применяемый для определения типа обрешетки термин — «сплошная» совсем не означает, что доски решетин прибиваются впритирку друг к другу. Обычно таким образом крепятся только две верхних и две нижних решетины, остальные образуют между собой зазор от 2 до 5 см. Решетины могут быть изготовлены из окромленого (ровного обрезанного с двух сторон по длине) или не кромленого теса толщиной 2–2,5 см. При применении не кромленых досок их располагают по скату кровли по типу комель к вершине, обзол с не кромленого теса должен быть обязательно снят.

Обрешетку под стальную кровлю выполняют сплошной или разреженной. Разреженную обрешетку делают из брусков сечением 50×50 мм, досок — 50×120 (140) мм, сплошную — из досок толщиной 30–40 мм. Бруски располагают через 200–250 мм друг от друга. Через каждые 1,4 м прибивают доски такой же толщины, как бруски, шириной до 140 мм (более широкие доски могут коробиться), которые необходимы для стыковки на них лежачих фальцев картин. Верх крыши — конек сбивают из досок шириной 200 мм.

В последнее время при использовании новейших кровельных покрытий стали часто использоваться контробрешетки. Контробрешеткой называют вторую, чаще всего сплошную обрешетку, выполненную под углом к первой. Угол наклона контробрешетки делают примерно равным 45°. Наклон решетин не только увеличивает пространственную жесткость крыши, но и позволяет сделать практически любую кровлю, за исключением, пожалуй, только черепичной, но при желании можно сделать и ее.

Сплошная обрешетка из досок в настоящее время почти не применяется ее заменили на сплошную обшивку скатов влагостойкой фанерой или плитами ОСП (OSB) (табл. 6).

Ссылка на основную публикацию
Adblock
detector